Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling.
نویسندگان
چکیده
Emerging evidence indicates that diazepam-binding inhibitor (DBI) mediates an endogenous benzodiazepine-mimicking (endozepine) effect on synaptic inhibition in the thalamic reticular nucleus (nRT). Here we demonstrate that DBI peptide colocalizes with both astrocytic and neuronal markers in mouse nRT, and investigate the role of astrocytic function in endozepine modulation in this nucleus by testing the effects of the gliotoxin fluorocitrate (FC) on synaptic inhibition and endozepine signaling in the nRT using patch-clamp recordings. FC treatment reduced the effective inhibitory charge of GABAA receptor (GABAAR)-mediated spontaneous inhibitory postsynaptic currents in WT mice, indicating that astrocytes enhance GABAAR responses in the nRT. This effect was abolished by both a point mutation that inhibits classical benzodiazepine binding to GABAARs containing the α3 subunit (predominant in the nRT) and a chromosomal deletion that removes the Dbi gene. Thus, astrocytes are required for positive allosteric modulation via the α3 subunit benzodiazepine-binding site by DBI peptide family endozepines. Outside-out sniffer patches pulled from neurons in the adjacent ventrobasal nucleus, which does not contain endozepines, show a potentiated response to laser photostimulation of caged GABA when placed in the nRT. FC treatment blocked the nRT-dependent potentiation of this response, as did the benzodiazepine site antagonist flumazenil. When sniffer patches were placed in the ventrobasal nucleus, however, subsequent treatment with FC led to potentiation of the uncaged GABA response, suggesting nucleus-specific roles for thalamic astrocytes in regulating inhibition. Taken together, these results suggest that astrocytes are required for endozepine actions in the nRT, and as such can be positive modulators of synaptic inhibition.
منابع مشابه
Endogenous Positive Allosteric Modulation of GABAA Receptors by Diazepam binding inhibitor
Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission ...
متن کاملMorphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L
Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...
متن کاملLack of Intrinsic GABAergic Connections in the Thalamic Reticular Nucleus of the Mouse.
UNLABELLED It is generally thought that neurons in the thalamic reticular nucleus (TRN) form GABAergic synapses with other TRN neurons and that these interconnections are important for the function of the TRN. However, the existence of such intrinsic connections is controversial. We combine two complementary approaches to examine intrinsic GABAergic connections in the TRN of the mouse. We find ...
متن کاملAttentional activation of the visual thalamic reticular nucleus depends on 'top-down' inputs from the primary visual cortex via corticogeniculate pathways.
This study is concerned with corticothalamic neural mechanisms underlying attentional phenomena. Previous results from this laboratory demonstrated that the visual sector of the GABAergic thalamic reticular nucleus is activated by attention in rats. Here it is demonstrated that Fos-detected activation of the visual reticular sector in rats, induced by attentive exploration of a novel-complex en...
متن کاملGABAergic synaptic transmission triggers action potentials in thalamic reticular nucleus neurons.
GABAergic neurons in the thalamic reticular nucleus (TRN) form powerful inhibitory connections with several dorsal thalamic nuclei, thereby controlling attention, sensory processing, and synchronous oscillations in the thalamocortical system. TRN neurons are interconnected by a network of GABAergic synapses, but their properties and their role in shaping TRN neuronal activity are not well under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 50 شماره
صفحات -
تاریخ انتشار 2013